Somatic and physiological responses to cyclic fasting and re-feeding periods in sobaity sea bream (Sparidentex hasta, Valenciennes 1830)

M. TORFI MOZANZADEH1, J.G. MARAMMAZI2, M. YAGHOUBI2, V. YAVARI1, N. AGH3 & E. GISBERT4

1 Fisheries Department, Faculty of Marine Natural Resources, Khoramshahr Marine Science and Technology University, Khoramshahr, Iran; 2 South Iranian Aquaculture Research Centre, Ahwaz, Iran; 3 Artemia and Aquatic Research Institute, Urmia University, Urmia, Iran; 4 Unitat de Cultius Aquàtics, IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain

Abstract

Different fasting and re-feeding cycles were tested in a 60-day trial in sobaity sea bream (Sparidentex hasta) juveniles to evaluate their effects on growth, physiological and biochemical parameters. Fish were exposed in triplicate to the following feeding regimes: control (fed everyday); F-RF_{1+1} (1 day of starvation followed by 1 day of re-feeding); F-RF_{2+2} (2 days of starvation followed by 2 days of re-feeding); F-RF_{3+3} (3 days of starvation followed by 3 days of re-feeding); F-RF_{6+6} (6 days of starvation followed by 6 days of re-feeding); and F-RF_{1+2} (1 day of starvation followed by 2 days of re-feeding). A reduction in body mass between 10.0% (F-RF_{1+1}) and 24.3% (F-RF_{6+6}) was found in comparison with the control group after 60 days. As the length of fasting increased, the compensation coefficients in feed intake and weight gain decreased. Body lipid content decreased as fasting cycles increased. Haemoglobin, plasma protein, lysozyme and alkaline phosphatase activities were the most reliable biomarkers for assessing the nutritional condition in sobaity sea bream. A feeding strategy based on 1 day of starvation followed by 2 days of re-feeding (F-RF_{1+2} group) may be advisable for on-growing sobaity sea bream without reduction in growth and alteration of their haematological and physiological parameters.

KEY WORDS: body composition, fasting, growth performance, haematology, re-feeding, Sparidae

Introduction

Starvation or fasting is a normal condition that many fish species may experience in natural environments because of temperature, food limitation, migration and/or reproduction, among other factors (Madrid et al. 2001; Hinch et al. 2005; Miller et al. 2009). Fasting may be also applied in aquaculture as a management strategy/tool to reduce handling stress (i.e. fish transportation, specific medical treatments and quarantine periods) (Davis & Gaylord 2011), reduce mortality due to disease outbreaks (Shoemaker et al. 2003) and ameliorate water quality problems (i.e. turbidity). In addition, fasting may be also used for production purposes such as increasing the quality of fish body composition (Rasmussen et al. 2000; Grigorakis & Alexis 2005) and avoidance of risks of overproduction (Krogdahl & Bakke-Mckellip 2005).

Several studies have shown that teleost fish are able to tolerate these periods of unfavourable feeding conditions by activating various behavioural changes and adaptive biochemical, physiological and structural responses (Navarro & Gutiérrez 1995; McCue 2010; Gisbert et al. 2011). For instance, some studies have shown that fish were able to reduce the energy expenditure from protein turnover (Salem et al. 2007) and expend endogenous nutrients and energy reserves to maintain vital processes (e.g. brain function, respiration, osmoregulation) with a subsequent loss in body weight (Navarro & Gutiérrez 1995; Ali et al. 2003; Furné et al. 2012). These responses are generally species-specific dependent (Navarro & Gutiérrez 1995; Wang et al. 2006; McCue 2010), and many biotic (e.g. age, size, health and nutritional status prior to feed deprivation) and abiotic (e.g. season, temperature, salinity) factors have profound effects on them.